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Announcements



Lecture plan

How are Bayesian models fit? Part 1

e Central difficulty

* Naive solution: random sampling

* Building toward Markov Chain Monte Carlo methods: rejection sampling

First: why is this important?

* Even if you’re only ever using Stan, useful to understand model fitting
diagnostics

* Some models (especially with discrete parameters) can’t be fit in Stan
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|dea 1: Grid sampling (uniform/equal spacing)

In high school calculus, learned grid approximations to integrals
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Grid sampling notes

Often want to calculate q(6|x) in log space
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How good is it? Good if:

* Grid is “fine-grained” — many points
* Grid overlaps with g(8]x)

Really computationally expensive in high dimensions!! And how do we
know where q is comparatively large?



Grid sampling and curse of dimensionality

e 10 parameters

e if we don’t know beforehand where the posterior mass is
e need to choose wide box for the grid
e need to have enough grid points to get some of them where
essential mass is

e e.g. 50 or 1000 grid points per dimension
— 5010 = 1e17 grid points
— 100010 = 1e30 grid points
e R and my current laptop can compute density of normal

distribution about 50 million times per second

— evaluation in 1e17 grid points would take 60 years
— evaluation in 1e30 grid points would take 600 billion years



l[dea 2: We don’t need uniform grid J{
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Indirect sampling

e Rejection sampling
e Importance sampling
e Markov chain Monte Carlo (next time)



Rejection sampling

Proposal forms envelope over the target distribution
q@ly )/Mg(6)= 1

Draw from the proposal and accept with probability
q(8]y)/Mg(6)
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Rejection sampling

Proposal forms envelope over the target distribution
q@ly )/Mg(6)= 1

Draw from the proposal and accept with probability
q(8]y)/Mg(6)
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« Accepted * Rejected Mg(theta) ——q(thetaly) 27/50



Rejection sampling

Proposal forms envelope over the target distribution
q(@ly )YMg(6)= 1

Draw from the proposal and accept with probability
q(6]y)/Mg(6)

Common for
truncated
distributions
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Rejection sampling

e The effective sample size (ESS) is the number of accepted
draws
e with bad proposal distribution may require a lot of trials

e selection of good proposal gets very difficult when the
number of dimensions increase

e reliable diagnostics and thus can be a useful part



Code?



Importance sampling

-Proposal does not need to have a higher value everywhere
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Importance sampling

-Proposal does not need to have a higher value everywhere

Draws and importance weights
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—w(theta) = q(theta | y)/g(theta)
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Some uses of importance sampling

In general selection of good proposal gets more difficult when
the number of dimensions increase, but there are many special
use case which scale well (e.g. Prof. Aki has used IS up to 10k
dimensions)

e Fast leave-one-out cross-validation

e Fast bootstrapping

e Fast prior and likelihood sensitivity analysis

e Conformal Bayesian computation

e Particle filtering

e Improving distributional approximations (e.g Laplace, VI)
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Questions?
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